ON UINTATHERIUM, BATHMODON AND TRIISODON.

BY E. D. COPE.
Bathmodon pachypus Cope, sp. nov.
The speeies originally deseribed by me under the name of Bathmodon radians, was based on a number of specimens obtained by Dr. Hayden, from the Wasateh formation near Evanston, W yoming. I subsequently aseertained that this material ineluded two species, a larger and a smaller. The latter I deseribed under the name of Bathmodon Taitpes ${ }^{1}$: for the larger the name of Bathmodon radians was retained. Besides various diversities between the skeletons of these speeies, their astragali exhibit eharacters which indieate that the genus Bathmodon is distinct from Coryphodon, although I have admitted their supposed identity in some of my publieations. ${ }^{2}$ I pointed out the differential eharacters of the two genera in 1882, ${ }^{3}$ but did not then express the most important feature. I then defined Bathmodon as follows : "Astragalus subquadrate, without internal hook," and Coryphodom, "Astragalus transverse, with internal hook." The absence of the internal prolongation of the astragalus in Bathmoulon, is due to the presence of a facet for artieulation with some bone, which is not found in Coryphodon. This may have been a proximal prolongation of the entocunciform, or perhaps a distinet bone, or even the proximal extremity of the metacarpus of the hallux.

Besides the B. radions, I am alequanted with a seeond speeies of superior dimensions. The remains consist of a pelvis with fermur and several bones of the posterior leg and foot, and the humerus and ratius of the foreleg. These bones are as long as those of the largest known ('or!yphorlon (C. ona. x^{\prime}), and are more robust. In deseription of this new species, whieh I (:all Bathmodon pachypus, I give the following dimensions :-

1 Ammal Report U. S. Geolog. Survey Terrs., 18i2, p. 588.
${ }^{2}$ Report U. S. G. Survey W. of the 100th Meridian, iv, 1877, p. 187.
${ }^{3}$ American Naturalist, Jan. 188:, Proceeds. Aner. Philos. Society, 1881, p. 165 .
M.
Length of humerus, 400
Dianteters of proximal extremity $\left\{\begin{array}{l}\text { anteroposterior, } \quad \cdot 107 \\ \text { transverse oblique, } \\ \hline 159\end{array}\right.$
Width at epieondyles, 166
Diameters of condyles $\left\{\begin{array}{l}\text { transverse, } \\ \text { anteroposterior }\end{array}\right.$ froller, -112
(flange, -058 -087
Length of pelvis antero-posteriorly, -600
Chord of erest of ilium, -350
Auteroposterior width of peduncle ilium, -110
Length of isehium from acetabulum, $\cdot 150$
Length of pubis to symphysis do., -160
Length of femur, -527
Width of femur proximately, -160
Diameter of head of femur, -080
Diameter of shaft above third trochanter, -066
Diameter of shaft at third troelianter, -106
Width of condyles of femur, -134
Depth of condyles with rotular crest, -126
Diameters of astragalns above $\left\{\begin{array}{l}\text { anteroposterior, }\end{array}\right.$ 0675
(transver'se, -0800
Length of caleaneum, -100
From the Wasatch of the Big Iorn, J. L. Wortman.
Uintatherium robustum Leidy.I have for some years had in my possession a fragmentarylower jaw from the Bridger beds of Wyoming, which I have beenunable to refer to its proper place in the system. It is describedin part in the Annual Report of the U. S. Geological Survey ofthe Territories, 1872 , p. 565 . The rami support roots and erownsof six molars, and the symphysis has two alveoli on eaeh side.The peeuliarity of the animal consists in this latter faet, since thespeeies so far as described, are said to have four teeth on eachside of the symphysis, viz, three ineisors and one canine. Thosepresent in the present speeies I suppose to be ineisors. Themolar teeth are so much like those of Uintatherium robustum,that I believe the speeimen to belong to that species.
Symphysis very much compressed, so that the incisor teeth of opposite sides are close together; its inferior outline curred
upwards to the alveolar edge, in an obtuse keel. Base of flange for superior canine distinet, commencing below the posterior edge of the posterior alveolus, and immediately preceded by a mental foramen. Middle line of symphysis rugose. Ramus at last molar robust, owing to the prominence of the inferior part of the anterior masseteric ridge. In eonneetion with the oblique position of the head, the inferior molars are oblique to the long axis of the ramus, sloping upwards and baekwards, with exposed anterior roots. The molars inerease in size posteriorly, and the last one is abruptly larger than the penultimate. Their strueture is as in U. robustum, i. e., with an obliquely transverse high crest in front, and a low posterior transverse edge of the heel, and a short oblique erest between the two. The last named is short, and is directed obliqnely ontwards and forwards towards the external extremity of the anterior crest, but disappears before reaching it. The internal extremity of this and of the low posterior crest, with the external extremity of the anterior crest, rise into cusps. At the middle of the anterior base of the anterior transverse crest there is a tubercle, whieh represents the anterior limb of the anterior V in Coryphodon. The crowns of the premolars are broken away in the specimen.

The alveoli of the ineisors are flat, and are direeted forwards at an angle of only 20° from the horizontal until near their orifiees, where the angle is greater. The roots of the incisors are thus curved upwards and forwards. There is but little space between the anterior alveolus and the anterior angle of the symphysis.

Measurements.
 M.

Length from anterior edge of symphysis to anterior
base of canine flang3. $. \quad . \quad . \quad . \quad . \quad 074$
Width of symphysis below at bases of lateral flanges, 032
Iepth of symphysis between do., 040
Width of symphysis above between posterior in-
cisors,
Length of bases of posterior five molars, . . 148
Length of bases of true molars, 110
Diameters crown, m. ii, ranteroposterior, . . 031
itransverse in front, . . 020
Diameters crown, m. iii, \{ anteroposterior, . . 035
λ transverse in front, . . 025
Width of ranus at posterior edge of m . iii, . . 040

Although the crowns are somewhat worn, the enamel is wrinkled intermediately between coarse and fine.

The speeimen described was obtained in the Bridger beds on Henry's Fork of Green River, Wyoming.

Triisodon conidens Cope.
A right maxillary bone and eorresponding mandibular ramus represent this species in my eollcetion. The former sustains the last five molars, and the latter the last three, with alveoli of the others and of the eanine tooth. The pieces indieate a skull of the size of that of the wolf, and a good deal more robust in its vertical measurements.

The third superior premolar has a base of triangular outline, the external side longer than either of the internal, which are eonneeted by a broadly rounded angle. The external eusp is of lentieular seetion at the base, and cireular seetion near the apex. An internal cusp is represented by a strong eingulum as in Periptychus, which eonneets with the posterior base of the external eusp. The crown of the fourth superior premolar has a triangular base of which the anterior side is shorter than either of the other two, which are subequal. The external cusp is large, simple, and subeonic. The internal is distinct but smaller and is continued posteriorly as a cingulum to the posterior base of the external eusp. No internal eingulum. The crown of the first true molar is worn to the roots. The second true molar is the longest of the series. Its base is a triangle, placed transversely to the axis of the jaw, of which the external side is the shortest, the anterior the next longer, and the posterior the longest. The apex or internal extremity of the crown is obtusely rounded. There are two subequal external eusps, whieh are injured in the specimen. The internal eusp is the apex of a V whose limbs form the anterior and posterior edges of the grinding faee of the crown, extending outwards to near the bases of the external eusps. Posterior to the posterior one is a strong basal eingulum. No internal, and a faint anterior cingulum. There is probably an external cingulum, but it is broken away. The last molar is of an oval outline placed transversely to the cranial axis, both the external and internal extremities contraeted, the latter a little the more so. 'There is a large anterior external eonieal cusp. The posterior external is small, and is situated at the posterior third of the posterior border of the
crown. The internal cusp is well developed, and has a subcircular seetion. There are strong external and posterior eingula, and a weak anterior one, but no internal cingnlum. The posterior extremity of the maxillary bone within the zygoma, is immediately above the posterior border of the last superior molar.
Measurements of Superior Molars. M.
Length of bases of posterior five, -069
Diameters base, Pm. iii, (anteroposterior. -013
(transverse, -009
Diameters base, Pm. iv, (anteroposterior, -0145
(transrerse, 014
Length base of true molars, -039
Diameters base of m. ii, fanteroposterior, -0175
(transverse, -021
Diameters base, m. iii, (anteroposterior, -010
(transverse, 0175
Elevation of base of zygoma, above base of m. iii, 018

The ramus of the lower jaw is, as usually with the Creodonta, deeper and less robust than that of Carnivora of corresponding size. It is also more compressed than that of the I'riesodon quivirensis. It retains its depth to below the canine teeth, and does not shallow below the middle of the eoronoid process, where also there is no tendency to inflection. The anterior masseterie ridge is not very prominent, and the masseteric fossa is not defined below, nor is the inferior edge of the ramus prominent or ridged at that point,

The premolar teeth are lost, but they occupied but a short space, and were probably only three in number. The first and second true molars are subequal, while the third is a little smaller than either. Fach consists of an anterior higher and a posterior lower portion, the lower region being at the junction of the two. The anterior part has a nearly circular seetion, and eontracts towards the apex. The latter is divided into three eusps, a larger external and two lesser internal. The external and posterior internal soon fuse on wearing, and their combined seetion is a crescent. The anterior inner is small and stands near the inner edge of the erown, and not at the middle as in T'. quivirensis, and is eircular in section. The heel of the tooth rises to its posterior border, which is divided into two eusps. Each of these sends a
ridge forwards towards the base of the anterior cone of the tootl. The external is the larger, and reaches that base. The internal is smaller, and falls short of it. The posterior inferior molar differs from the others in form as well as in size. There is no posterior imner anterior cusp, the large external cusp being supplemented by a small anterior internal only, which sends a little ridge downwards and posteriorly. The heel is narrowed, and supports the two cusps on its posterior border in contact, and not separate as on the other teeth. The extemal is the larger, and extends forwards to the base of the anterior cone near its middle. Some remmants of hard matrix leare it uneertain whether there is a small median posterior marginal tuberele on the first and second molars or not.

The first inferior true molar has a strong external cingulum: the second lias none; the third has one, which is mo-t evident between the cusps, is weaker at the base of the posterior lobe, and faint at the anterior lobe. No internal cingula.

Measurements. M.
Length of true molar series, 052
Length from in. iii to anterior masseterie ritlge, . 013
Diameters of m. i, (anteroposterior, 017
Diameters of m. ii, \{ anteroposterior, 018
(transverse,011
Diameters of m. iii, $\left\{\begin{array}{l}\text { anteroposterior, } 016 \\ \text { transverse, } 0105\end{array}\right.$
Depth of ramus at m. iii, 047
Width of ramus at m. iii, inferiorly,013
The molar teeth of this species are more like those of the T. heilpriniamus than those of the T. quivirensis. This is seen in the more conic character of the anterior lobe of the tooth, and the better development of the anterior inner eusp. The species is a good deal larger than the T. quivirensis.

From the Puerco beds of N. W. New Mexieo, D. Baldwin.
Note.-The superior molar tecth show a resemblance to those of Mesony.r, and also to those of Deltatherium. Among the Mesonychidie, Trïsodon approaches Sarcothraustes in the form of the inferior molars, in the expanded heel. On the owher hand, the
appearance of the anterior cusp of the inferior molars approaches what is seen in Amblyctonus. The small transverse posterior superior molar of Trizisodon further distinguishes it from Amblycfonus. A series of modifications of the dental characters procceding from the simple to the more complex, may be constructed as follows: 1. Mesonyx; 2. Dissacus; 3. Sarcothraustes; 4. Trïsodon; 5. Amblyctonus; 6. Deltatherium. The first three belong to the Mesonychidre, as distinguished by the form of the tarsal articulations. Whether Trïsodon must be arranged with A mblyctomu: or not, cannot be ascertained until the foot structure is linown.

